Divide the numerator and denominator by the highest power of <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> in the denominator, which is <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Simplify each term.

Cancel the common factor of <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Move the negative in front of the fraction.

Split the limit using the Limits Quotient Rule on the limit as <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> approaches <math><mstyle displaystyle="true"><mo>-</mo><mi>∞</mi></mstyle></math> .

Evaluate the limit of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> which is constant as <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> approaches <math><mstyle displaystyle="true"><mo>-</mo><mi>∞</mi></mstyle></math> .

Split the limit using the Sum of Limits Rule on the limit as <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> approaches <math><mstyle displaystyle="true"><mo>-</mo><mi>∞</mi></mstyle></math> .

Evaluate the limit of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> which is constant as <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> approaches <math><mstyle displaystyle="true"><mo>-</mo><mi>∞</mi></mstyle></math> .

Move the term <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> outside of the limit because it is constant with respect to <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Since its numerator approaches a real number while its denominator is unbounded, the fraction <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mi>x</mi></mrow></mfrac></mstyle></math> approaches <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The result can be shown in multiple forms.

Exact Form:

Decimal Form:

Do you know how to Simplify limit as x approaches negative infinity of x/(2x-3)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | seven hundred seven million two hundred ninety-eight thousand seven hundred sixty-eight |
---|

- 707298768 has 256 divisors, whose sum is
**4365990720** - The reverse of 707298768 is
**867892707** - Previous prime number is
**181**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 54
- Digital Root 9

Name | one billion seven hundred seventy-seven million six hundred seven thousand two hundred fifty-one |
---|

- 1777607251 has 16 divisors, whose sum is
**2339504640** - The reverse of 1777607251 is
**1527067771** - Previous prime number is
**131**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 43
- Digital Root 7

Name | eight hundred forty-seven million eight hundred thirty thousand eighty |
---|

- 847830080 has 1024 divisors, whose sum is
**12118429440** - The reverse of 847830080 is
**080038748** - Previous prime number is
**103**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 38
- Digital Root 2