Move <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mo>-</mo><mn>6</mn></mrow></msup></mstyle></math> to the denominator using the negative exponent rule <math><mstyle displaystyle="true"><msup><mrow><mi>b</mi></mrow><mrow><mo>-</mo><mi>n</mi></mrow></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac></mstyle></math> .

Move <math><mstyle displaystyle="true"><msup><mrow><mi>b</mi></mrow><mrow><mo>-</mo><mn>4</mn></mrow></msup></mstyle></math> to the denominator using the negative exponent rule <math><mstyle displaystyle="true"><msup><mrow><mi>b</mi></mrow><mrow><mo>-</mo><mi>n</mi></mrow></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mo>-</mo><mn>2</mn></mrow></msup></mstyle></math> by <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mn>6</mn></mrow></msup></mstyle></math> by adding the exponents.

Move <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mn>6</mn></mrow></msup></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Subtract <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><msup><mrow><mi>b</mi></mrow><mrow><mo>-</mo><mn>3</mn></mrow></msup></mstyle></math> by <math><mstyle displaystyle="true"><msup><mrow><mi>b</mi></mrow><mrow><mn>4</mn></mrow></msup></mstyle></math> by adding the exponents.

Move <math><mstyle displaystyle="true"><msup><mrow><mi>b</mi></mrow><mrow><mn>4</mn></mrow></msup></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Subtract <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Simplify <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msup><msup><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msup></mstyle></math> .

Do you know how to Simplify (8a^-6b^-4)/(a^-2b^-3)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion one hundred seventy-six million nine hundred ninety-one thousand nine hundred twenty-nine |
---|

- 1176991929 has 8 divisors, whose sum is
**2092430112** - The reverse of 1176991929 is
**9291996711** - Previous prime number is
**3**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 54
- Digital Root 9

Name | four hundred sixty-six million six hundred seventy-three thousand fifty-nine |
---|

- 466673059 has 4 divisors, whose sum is
**486963216** - The reverse of 466673059 is
**950376664** - Previous prime number is
**23**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 46
- Digital Root 1

Name | eight hundred thirty-four million six hundred eighty-two thousand six hundred three |
---|

- 834682603 has 4 divisors, whose sum is
**846438768** - The reverse of 834682603 is
**306286438** - Previous prime number is
**71**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 40
- Digital Root 4