Expand <math><mstyle displaystyle="true"><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>+</mo><mi>c</mi><mo>)</mo></mrow></mstyle></math> by multiplying each term in the first expression by each term in the second expression.

Combine the opposite terms in <math><mstyle displaystyle="true"><mi>a</mi><mo>⋅</mo><mi>a</mi><mo>+</mo><mi>a</mi><mi>b</mi><mo>+</mo><mi>a</mi><mi>c</mi><mo>+</mo><mi>b</mi><mi>a</mi><mo>+</mo><mi>b</mi><mo>⋅</mo><mi>b</mi><mo>+</mo><mi>b</mi><mi>c</mi><mo>-</mo><mi>c</mi><mi>a</mi><mo>-</mo><mi>c</mi><mi>b</mi><mo>-</mo><mi>c</mi><mo>⋅</mo><mi>c</mi></mstyle></math> .

Reorder the factors in the terms <math><mstyle displaystyle="true"><mi>a</mi><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mo>-</mo><mi>c</mi><mi>a</mi></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mi>a</mi><mi>c</mi></mstyle></math> from <math><mstyle displaystyle="true"><mi>a</mi><mi>c</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><mi>a</mi><mo>⋅</mo><mi>a</mi><mo>+</mo><mi>a</mi><mi>b</mi><mo>+</mo><mi>b</mi><mi>a</mi><mo>+</mo><mi>b</mi><mo>⋅</mo><mi>b</mi><mo>+</mo><mi>b</mi><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Reorder the factors in the terms <math><mstyle displaystyle="true"><mi>b</mi><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mo>-</mo><mi>c</mi><mi>b</mi></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mi>b</mi><mi>c</mi></mstyle></math> from <math><mstyle displaystyle="true"><mi>b</mi><mi>c</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><mi>a</mi><mo>⋅</mo><mi>a</mi><mo>+</mo><mi>a</mi><mi>b</mi><mo>+</mo><mi>b</mi><mi>a</mi><mo>+</mo><mi>b</mi><mo>⋅</mo><mi>b</mi></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Simplify each term.

Multiply <math><mstyle displaystyle="true"><mi>a</mi></mstyle></math> by <math><mstyle displaystyle="true"><mi>a</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> by <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> by <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> by adding the exponents.

Move <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> by <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> .

Reorder <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>a</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><mi>a</mi><mi>b</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>a</mi><mi>b</mi></mstyle></math> .

Do you know how to Evaluate (a+b-c)(a+b+c)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion three hundred fifty-three million seven hundred twenty-five thousand nine hundred seventy-eight |
---|

- 1353725978 has 8 divisors, whose sum is
**2047371060** - The reverse of 1353725978 is
**8795273531** - Previous prime number is
**121**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 50
- Digital Root 5

Name | one billion seven hundred twenty-seven million eight hundred forty-nine thousand two hundred eighty-four |
---|

- 1727849284 has 32 divisors, whose sum is
**4676886720** - The reverse of 1727849284 is
**4829487271** - Previous prime number is
**19**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 52
- Digital Root 7

Name | one billion one hundred sixty-five million one hundred twenty-three thousand five hundred sixty-nine |
---|

- 1165123569 has 8 divisors, whose sum is
**1555388992** - The reverse of 1165123569 is
**9653215611** - Previous prime number is
**823**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 39
- Digital Root 3