Divide each term in <math><mstyle displaystyle="true"><mn>2</mn><mi>y</mi><mi>x</mi><mo>=</mo><mo>-</mo><mn>5</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn><mi>x</mi></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Cancel the common factor of <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the right side.

Move the negative in front of the fraction.

Find where the expression <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>5</mn></mrow><mrow><mn>2</mn><mi>x</mi></mrow></mfrac></mstyle></math> is undefined.

Consider the rational function <math><mstyle displaystyle="true"><mi>R</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mrow><mi>b</mi><msup><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msup></mrow></mfrac></mstyle></math> where <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math> is the degree of the numerator and <math><mstyle displaystyle="true"><mi>m</mi></mstyle></math> is the degree of the denominator.

1. If <math><mstyle displaystyle="true"><mi>n</mi><mo><</mo><mi>m</mi></mstyle></math> , then the x-axis, <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mn>0</mn></mstyle></math> , is the horizontal asymptote.

2. If <math><mstyle displaystyle="true"><mi>n</mi><mo>=</mo><mi>m</mi></mstyle></math> , then the horizontal asymptote is the line <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mfrac><mrow><mi>a</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

3. If <math><mstyle displaystyle="true"><mi>n</mi><mo>></mo><mi>m</mi></mstyle></math> , then there is no horizontal asymptote (there is an oblique asymptote).

Find <math><mstyle displaystyle="true"><mi>n</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>m</mi></mstyle></math> .

Since <math><mstyle displaystyle="true"><mi>n</mi><mo><</mo><mi>m</mi></mstyle></math> , the x-axis, <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mn>0</mn></mstyle></math> , is the horizontal asymptote.

There is no oblique asymptote because the degree of the numerator is less than or equal to the degree of the denominator.

No Oblique Asymptotes

This is the set of all asymptotes.

Vertical Asymptotes: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>0</mn></mstyle></math>

Horizontal Asymptotes: <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mn>0</mn></mstyle></math>

No Oblique Asymptotes

Vertical Asymptotes: <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>0</mn></mstyle></math>

Horizontal Asymptotes: <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mn>0</mn></mstyle></math>

No Oblique Asymptotes

Do you know how to Graph 2f(x)=-5? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | four hundred forty-four million nine hundred thirty thousand seventy |
---|

- 444930070 has 8 divisors, whose sum is
**677662920** - The reverse of 444930070 is
**070039444** - Previous prime number is
**65**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 31
- Digital Root 4

Name | two billion ninety-four million two hundred fourteen thousand two hundred five |
---|

- 2094214205 has 8 divisors, whose sum is
**2517883704** - The reverse of 2094214205 is
**5024124902** - Previous prime number is
**521**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 29
- Digital Root 2

Name | seven hundred ninety-one million two thousand eight hundred eighty-one |
---|

- 791002881 has 16 divisors, whose sum is
**1172920320** - The reverse of 791002881 is
**188200197** - Previous prime number is
**1151**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 36
- Digital Root 9