Use the binomial expansion theorem to find each term. The binomial theorem states <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><mstyle displaystyle="true"><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover></mstyle><mo>⁡</mo><mi>n</mi><mi>C</mi><mi>k</mi><mo>⋅</mo><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mo>-</mo><mi>k</mi></mrow></msup><msup><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></mrow></mstyle></math> .

Expand the summation.

Simplify the exponents for each term of the expansion.

Simplify the polynomial result.

Do you know how to Expand Using the Binomial Theorem (1/2x^3y^2-4y)^9? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion nine hundred sixty-nine million eight hundred sixty-seven thousand thirty-three |
---|

- 1969867033 has 4 divisors, whose sum is
**1969973008** - The reverse of 1969867033 is
**3307689691** - Previous prime number is
**81931**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 52
- Digital Root 7

Name | one billion seventy-eight million eight hundred sixty-one thousand four hundred nine |
---|

- 1078861409 has 4 divisors, whose sum is
**1079098416** - The reverse of 1078861409 is
**9041688701** - Previous prime number is
**4643**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 44
- Digital Root 8

Name | nine hundred eighty-nine million thirty-three thousand five hundred twenty |
---|

- 989033520 has 128 divisors, whose sum is
**5431380480** - The reverse of 989033520 is
**025330989** - Previous prime number is
**59**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 39
- Digital Root 3