Rewrite the equation as <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>h</mi></mrow></mfrac><mo>=</mo><mi>a</mi></mstyle></math> .

Multiply both sides by <math><mstyle displaystyle="true"><mi>h</mi></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mi>h</mi></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Divide each term in <math><mstyle displaystyle="true"><mi>π</mi><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>a</mi><mi>h</mi></mstyle></math> by <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> and simplify.

Divide each term in <math><mstyle displaystyle="true"><mi>π</mi><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>a</mi><mi>h</mi></mstyle></math> by <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Take the square root of both sides of the equation to eliminate the exponent on the left side.

Simplify <math><mstyle displaystyle="true"><mo>±</mo><msqrt><mfrac><mrow><mi>a</mi><mi>h</mi></mrow><mrow><mi>π</mi></mrow></mfrac></msqrt></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mfrac><mrow><mi>a</mi><mi>h</mi></mrow><mrow><mi>π</mi></mrow></mfrac></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mi>a</mi><mi>h</mi></msqrt></mrow><mrow><msqrt><mi>π</mi></msqrt></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mi>a</mi><mi>h</mi></msqrt></mrow><mrow><msqrt><mi>π</mi></msqrt></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mi>π</mi></msqrt></mrow><mrow><msqrt><mi>π</mi></msqrt></mrow></mfrac></mstyle></math> .

Combine and simplify the denominator.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mi>a</mi><mi>h</mi></msqrt></mrow><mrow><msqrt><mi>π</mi></msqrt></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mi>π</mi></msqrt></mrow><mrow><msqrt><mi>π</mi></msqrt></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mi>π</mi></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mi>π</mi></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mi>π</mi></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mi>π</mi></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mi>π</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Simplify.

Combine using the product rule for radicals.

The complete solution is the result of both the positive and negative portions of the solution.

First, use the positive value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the first solution.

Next, use the negative value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the second solution.

The complete solution is the result of both the positive and negative portions of the solution.

Do you know how to Solve for r a=(pir^2)/h? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | eight hundred sixty-four million eight hundred ninety-four thousand one hundred fifty-two |
---|

- 864894152 has 32 divisors, whose sum is
**2940328188** - The reverse of 864894152 is
**251498468** - Previous prime number is
**137**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 47
- Digital Root 2

Name | three hundred eighty-four million eight thousand two hundred fourteen |
---|

- 384008214 has 16 divisors, whose sum is
**768395952** - The reverse of 384008214 is
**412800483** - Previous prime number is
**2173**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 30
- Digital Root 3

Name | two billion one hundred thirty-nine million seven hundred thirty-eight thousand nine hundred forty-two |
---|

- 2139738942 has 16 divisors, whose sum is
**4668521472** - The reverse of 2139738942 is
**2498379312** - Previous prime number is
**11**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 48
- Digital Root 3