To write <math><mstyle displaystyle="true"><mo>-</mo><mi>e</mi></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mi>e</mi></mrow><mrow><mi>e</mi></mrow></mfrac></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mo>-</mo><mi>e</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mi>e</mi></mrow><mrow><mi>e</mi></mrow></mfrac></mstyle></math> .

Combine the numerators over the common denominator.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mi>e</mi><mi>e</mi></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>e</mi></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>e</mi></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>1</mn><mo>-</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> in a factored form.

Rewrite <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Since both terms are perfect squares, factor using the difference of squares formula, <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>a</mi><mo>-</mo><mi>b</mi><mo>)</mo></mrow></mstyle></math> where <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mi>e</mi></mstyle></math> .

The result can be shown in multiple forms.

Exact Form:

Decimal Form:

Do you know how to Evaluate 1/e-e? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two billion thirty-nine million two hundred one thousand seven hundred thirty |
---|

- 2039201730 has 32 divisors, whose sum is
**4531561200** - The reverse of 2039201730 is
**0371029302** - Previous prime number is
**9**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 27
- Digital Root 9

Name | one billion two hundred fifty-nine million one hundred forty-nine thousand five hundred ninety-eight |
---|

- 1259149598 has 8 divisors, whose sum is
**2158542192** - The reverse of 1259149598 is
**8959419521** - Previous prime number is
**7**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 53
- Digital Root 8

Name | one billion seven hundred three million seven hundred thirteen thousand one hundred thirty |
---|

- 1703713130 has 32 divisors, whose sum is
**3522600576** - The reverse of 1703713130 is
**0313173071** - Previous prime number is
**197**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 26
- Digital Root 8