Since the directrix is vertical, use the equation of a parabola that opens up or down.

The vertex <math><mstyle displaystyle="true"><mrow><mo>(</mo><mi>h</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></mstyle></math> is halfway between the directrix and focus. Find the <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> coordinate of the vertex using the formula <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mfrac><mrow><mtext>y coordinate of focus</mtext><mo>+</mo><mtext>directrix</mtext></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> . The <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> coordinate will be the same as the <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> coordinate of the focus.

Simplify the vertex.

Subtract <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

The distance from the focus to the vertex and from the vertex to the directrix is <math><mstyle displaystyle="true"><mrow><mo>|</mo><mi>p</mi><mo>|</mo></mrow></mstyle></math> . Subtract the <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> coordinate of the vertex from the <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> coordinate of the focus to find <math><mstyle displaystyle="true"><mi>p</mi></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Substitute in the known values for the variables into the equation <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mi>h</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>4</mn><mi>p</mi><mrow><mo>(</mo><mi>y</mi><mo>-</mo><mi>k</mi><mo>)</mo></mrow></mstyle></math> .

Simplify.

Do you know how to Find the Parabola with Focus (0,5) and Directrix y=-5 (0,5) , y=-5? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion fifty-four million three hundred two thousand nine hundred thirty-eight |
---|

- 1054302938 has 32 divisors, whose sum is
**1773213456** - The reverse of 1054302938 is
**8392034501** - Previous prime number is
**37**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 35
- Digital Root 8

Name | six hundred fifty-one million seven hundred sixty-six thousand three hundred thirty-three |
---|

- 651766333 has 4 divisors, whose sum is
**662813280** - The reverse of 651766333 is
**333667156** - Previous prime number is
**59**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 40
- Digital Root 4

Name | one hundred twenty-three million three hundred ninety-nine thousand five hundred eighty-five |
---|

- 123399585 has 8 divisors, whose sum is
**164728640** - The reverse of 123399585 is
**585993321** - Previous prime number is
**855**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 45
- Digital Root 9