Add <math><mstyle displaystyle="true"><mn>72</mn><mi>x</mi></mstyle></math> to both sides of the equation.

Add <math><mstyle displaystyle="true"><mn>83</mn></mstyle></math> to both sides of the equation.

Use the quadratic formula to find the solutions.

Substitute the values <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><mn>16</mn></mstyle></math> , <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mn>72</mn></mstyle></math> , and <math><mstyle displaystyle="true"><mi>c</mi><mo>=</mo><mn>83</mn></mstyle></math> into the quadratic formula and solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Simplify the numerator.

Raise <math><mstyle displaystyle="true"><mn>72</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>16</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>64</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>83</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>5312</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>5184</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>128</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>128</mn><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>128</mn><mo>)</mo></mrow></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt><mo>⋅</mo><msqrt><mn>128</mn></msqrt></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>128</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>8</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>⋅</mo><mn>2</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>64</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>128</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>64</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>8</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical.

Move <math><mstyle displaystyle="true"><mn>8</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>16</mn></mstyle></math> .

Simplify <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>72</mn><mo>±</mo><mn>8</mn><mi>i</mi><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>32</mn></mrow></mfrac></mstyle></math> .

Do you know how to Find the Roots (Zeros) 16x^2=-72x-83? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion seven hundred thirty-four million four hundred eighty-seven thousand six hundred twelve |
---|

- 1734487612 has 32 divisors, whose sum is
**4584870864** - The reverse of 1734487612 is
**2167844371** - Previous prime number is
**11**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 43
- Digital Root 7

Name | seven hundred twenty-one million six hundred eighty-eight thousand six hundred ninety-five |
---|

- 721688695 has 16 divisors, whose sum is
**889588224** - The reverse of 721688695 is
**596886127** - Previous prime number is
**7**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 52
- Digital Root 7

Name | one billion nine hundred fifty-two million nine hundred eighty-one thousand nine hundred fifty-three |
---|

- 1952981953 has 8 divisors, whose sum is
**2108359400** - The reverse of 1952981953 is
**3591892591** - Previous prime number is
**409**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 52
- Digital Root 7