Expand <math><mstyle displaystyle="true"><mo>-</mo><mn>19</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>3</mn><mo>+</mo><mn>7</mn><mi>x</mi><mo>+</mo><mn>15</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup></mstyle></math> .

Move <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Move <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Move <math><mstyle displaystyle="true"><mn>7</mn><mi>x</mi></mstyle></math> .

Reorder <math><mstyle displaystyle="true"><mo>-</mo><mn>19</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> and <math><mstyle displaystyle="true"><mn>15</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup></mstyle></math> .

Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

- | + | + | + | - | + | + |

Divide the highest order term in the dividend <math><mstyle displaystyle="true"><mn>15</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup></mstyle></math> by the highest order term in divisor <math><mstyle displaystyle="true"><mo>-</mo><mn>5</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

- | |||||||||||||||

- | + | + | + | - | + | + |

Multiply the new quotient term by the divisor.

- | |||||||||||||||

- | + | + | + | - | + | + | |||||||||

+ | + | - |

The expression needs to be subtracted from the dividend, so change all the signs in <math><mstyle displaystyle="true"><mn>15</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><mn>0</mn><mo>-</mo><mn>9</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math>

- | |||||||||||||||

- | + | + | + | - | + | + | |||||||||

- | - | + |

After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.

- | |||||||||||||||

- | + | + | + | - | + | + | |||||||||

- | - | + | |||||||||||||

- |

Pull the next term from the original dividend down into the current dividend.

- | |||||||||||||||

- | + | + | + | - | + | + | |||||||||

- | - | + | |||||||||||||

- | + | + |

Divide the highest order term in the dividend <math><mstyle displaystyle="true"><mo>-</mo><mn>10</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by the highest order term in divisor <math><mstyle displaystyle="true"><mo>-</mo><mn>5</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

- | + | + | |||||||||||||

- | + | + | + | - | + | + | |||||||||

- | - | + | |||||||||||||

- | + | + |

Multiply the new quotient term by the divisor.

- | + | + | |||||||||||||

- | + | + | + | - | + | + | |||||||||

- | - | + | |||||||||||||

- | + | + | |||||||||||||

- | + | + |

The expression needs to be subtracted from the dividend, so change all the signs in <math><mstyle displaystyle="true"><mo>-</mo><mn>10</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>0</mn><mo>+</mo><mn>6</mn></mstyle></math>

- | + | + | |||||||||||||

- | + | + | + | - | + | + | |||||||||

- | - | + | |||||||||||||

- | + | + | |||||||||||||

+ | - | - |

After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.

- | + | + | |||||||||||||

- | + | + | + | - | + | + | |||||||||

- | - | + | |||||||||||||

- | + | + | |||||||||||||

+ | - | - | |||||||||||||

+ | - |

The final answer is the quotient plus the remainder over the divisor.

Since the last term in the resulting expression is a fraction, the numerator of the fraction is the remainder.

Do you know how to Find the Remainder (-19x^2+3+7x+15x^4)÷(-5x^2+3)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.