Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

To write <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Move the negative in front of the fraction.

Rewrite the expression using the negative exponent rule <math><mstyle displaystyle="true"><msup><mrow><mi>b</mi></mrow><mrow><mo>-</mo><mi>n</mi></mrow></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac></mstyle></math> .

Apply the rule <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mfrac><mrow><mi>m</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup><mo>=</mo><mroot><mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot></mstyle></math> to rewrite the exponentiation as a radical.

Anything raised to <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is the base itself.

Do you know how to Convert to Radical Form square root of x^(3/4)x^-1? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.