Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><msqrt><mi>x</mi></msqrt></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mi>x</mi></msqrt></mrow><mrow><msqrt><mi>x</mi></msqrt></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><msqrt><mi>x</mi></msqrt></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mi>x</mi></msqrt></mrow><mrow><msqrt><mi>x</mi></msqrt></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mi>x</mi></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mi>x</mi></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mi>x</mi></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mi>x</mi></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Simplify.

Factor <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> out of <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><msqrt><mi>x</mi></msqrt></mstyle></math> .

Cancel the common factors.

Raise <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> out of <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msup></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Divide <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><msqrt><mi>x</mi></msqrt></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Do you know how to Rationalize the Denominator (x^3)/( square root of x)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion four hundred fifty-eight million two hundred forty-one thousand eight hundred twenty-six |
---|

- 1458241826 has 8 divisors, whose sum is
**2187542700** - The reverse of 1458241826 is
**6281428541** - Previous prime number is
**43049**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 41
- Digital Root 5

Name | five hundred nineteen million four hundred thirty-six thousand four hundred sixty-six |
---|

- 519436466 has 8 divisors, whose sum is
**783820800** - The reverse of 519436466 is
**664634915** - Previous prime number is
**167**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 44
- Digital Root 8

Name | five hundred sixty-six million two hundred ninety-nine thousand one hundred twenty-five |
---|

- 566299125 has 32 divisors, whose sum is
**820604928** - The reverse of 566299125 is
**521992665** - Previous prime number is
**7**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 45
- Digital Root 9