Apply the distributive property.

Apply the distributive property.

Apply the distributive property.

Combine the opposite terms in <math><mstyle displaystyle="true"><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mo>⋅</mo><mn>1</mn><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>-</mo><mn>1</mn><mo>⋅</mo><mn>1</mn></mstyle></math> .

Reorder the factors in the terms <math><mstyle displaystyle="true"><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mo>⋅</mo><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> from <math><mstyle displaystyle="true"><mn>1</mn><mo>⋅</mo><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Simplify each term.

Multiply <math><mstyle displaystyle="true"><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>2</mn><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow><mo>)</mo></mrow></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Do you know how to Simplify (2cos(theta)-1)(2cos(theta)+1)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two billion eighty-four million nine hundred eleven thousand nine hundred sixty-two |
---|

- 2084911962 has 16 divisors, whose sum is
**4765513152** - The reverse of 2084911962 is
**2691194802** - Previous prime number is
**3**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 42
- Digital Root 6

Name | one billion six hundred thirty-three million five hundred forty-one thousand one hundred eighteen |
---|

- 1633541118 has 64 divisors, whose sum is
**3854158848** - The reverse of 1633541118 is
**8111453361** - Previous prime number is
**17**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 33
- Digital Root 6

Name | five hundred thirty-nine million seven hundred forty-three thousand one hundred sixty-one |
---|

- 539743161 has 16 divisors, whose sum is
**742889664** - The reverse of 539743161 is
**161347935** - Previous prime number is
**37**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 39
- Digital Root 3