Use <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>b</mi></mstyle></math> to calculate the equation of the line, where <math><mstyle displaystyle="true"><mi>m</mi></mstyle></math> represents the slope and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> represents the y-intercept.

To calculate the equation of the line, use the <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>b</mi></mstyle></math> format.

Slope is equal to the change in <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> over the change in <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> , or rise over run.

The change in <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> is equal to the difference in x-coordinates (also called run), and the change in <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> is equal to the difference in y-coordinates (also called rise).

Substitute in the values of <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> into the equation to find the slope.

Simplify the numerator.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Simplify the denominator.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Move the negative in front of the fraction.

Use the formula for the equation of a line to find <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> .

Substitute the value of <math><mstyle displaystyle="true"><mi>m</mi></mstyle></math> into the equation.

Substitute the value of <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> into the equation.

Substitute the value of <math><mstyle displaystyle="true"><mi>y</mi></mstyle></math> into the equation.

Find the value of <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> .

Rewrite the equation as <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mn>3</mn><mo>+</mo><mi>b</mi><mo>=</mo><mn>6</mn></mstyle></math> .

Simplify each term.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mn>3</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Move the negative in front of the fraction.

Move all terms not containing <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> to the right side of the equation.

Add <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> to both sides of the equation.

To write <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>12</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Now that the values of <math><mstyle displaystyle="true"><mi>m</mi></mstyle></math> (slope) and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> (y-intercept) are known, substitute them into <math><mstyle displaystyle="true"><mi>y</mi><mo>=</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>b</mi></mstyle></math> to find the equation of the line.

Do you know how to Find the Equation Using Two Points (3,6) and (5,5)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | seven hundred twenty-nine million one hundred eighty thousand twelve |
---|

- 729180012 has 32 divisors, whose sum is
**2386407744** - The reverse of 729180012 is
**210081927** - Previous prime number is
**11**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 30
- Digital Root 3

Name | one billion six hundred two million one hundred ninety-six thousand five hundred forty-five |
---|

- 1602196545 has 8 divisors, whose sum is
**2563514496** - The reverse of 1602196545 is
**5456912061** - Previous prime number is
**5**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 39
- Digital Root 3

Name | one hundred thirty-nine million eighty-four thousand nine hundred eighty |
---|

- 139084980 has 32 divisors, whose sum is
**334702080** - The reverse of 139084980 is
**089480931** - Previous prime number is
**397**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 42
- Digital Root 6