To remove the radical on the left side of the equation, square both sides of the equation.

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mroot><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></mroot></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mroot><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></mroot></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Simplify the left side.

Simplify <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mroot><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></mroot></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Multiply the exponents in <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mroot><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></mroot></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Simplify.

Simplify the right side.

Raise <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

To remove the radical on the left side of the equation, cube both sides of the equation.

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><mroot><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></mroot></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Simplify the left side.

Simplify <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow><mrow><mn>3</mn></mrow></msup></mstyle></math> .

Multiply the exponents in <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow><mrow><mn>3</mn></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Simplify.

Simplify the right side.

Raise <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Do you know how to Solve for x square root of cube root of x=2? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | eight hundred forty-three million eight hundred eighty-eight thousand five hundred four |
---|

- 843888504 has 32 divisors, whose sum is
**3797498376** - The reverse of 843888504 is
**405888348** - Previous prime number is
**3**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 48
- Digital Root 3

Name | five hundred fifty-eight million two hundred forty-nine thousand five hundred twenty-nine |
---|

- 558249529 has 4 divisors, whose sum is
**558754020** - The reverse of 558249529 is
**925942855** - Previous prime number is
**1109**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 49
- Digital Root 4

Name | one billion four hundred six million one hundred eighty-three thousand nine hundred twenty |
---|

- 1406183920 has 64 divisors, whose sum is
**7193748672** - The reverse of 1406183920 is
**0293816041** - Previous prime number is
**95**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 34
- Digital Root 7