Factor out <math><mstyle displaystyle="true"><msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical.

Rewrite the expression using the least common index of <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mroot></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mi>y</mi></mrow><mrow><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><mi>y</mi></mrow><mrow><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mi>y</mi></mrow><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mn>6</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><mi>y</mi></mrow><mrow><mfrac><mrow><mn>4</mn></mrow><mrow><mn>6</mn></mrow></mfrac></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>y</mi></mrow><mrow><mn>4</mn></mrow></msup></mrow><mrow><mn>6</mn></mrow></mroot></mstyle></math> .

Combine using the product rule for radicals.

Multiply <math><mstyle displaystyle="true"><msup><mrow><mi>y</mi></mrow><mrow><mn>5</mn></mrow></msup></mstyle></math> by <math><mstyle displaystyle="true"><msup><mrow><mi>y</mi></mrow><mrow><mn>4</mn></mrow></msup></mstyle></math> by adding the exponents.

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Factor out <math><mstyle displaystyle="true"><msup><mrow><mi>y</mi></mrow><mrow><mn>6</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical.

Rewrite <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><mn>6</mn></mrow></mroot></mstyle></math> as <math><mstyle displaystyle="true"><msqrt><mroot><mrow><msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><mn>3</mn></mrow></mroot></msqrt></mstyle></math> .

Pull terms out from under the radical.

Do you know how to Simplify the Radical Expression sixth root of y^5 cube root of y^5? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two billion one hundred thirty-nine million four hundred ninety thousand six hundred ninety-five |
---|

- 2139490695 has 16 divisors, whose sum is
**3454593120** - The reverse of 2139490695 is
**5960949312** - Previous prime number is
**109**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 48
- Digital Root 3

Name | nine hundred sixty-five million one hundred sixty-eight thousand fifty-four |
---|

- 965168054 has 16 divisors, whose sum is
**1476160848** - The reverse of 965168054 is
**450861569** - Previous prime number is
**1867**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 44
- Digital Root 8

Name | eight hundred seventy-nine million five hundred seventy-seven thousand eight hundred four |
---|

- 879577804 has 16 divisors, whose sum is
**2261771568** - The reverse of 879577804 is
**408775978** - Previous prime number is
**7**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 55
- Digital Root 1