Rewrite <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Since both terms are perfect squares, factor using the difference of squares formula, <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>a</mi><mo>-</mo><mi>b</mi><mo>)</mo></mrow></mstyle></math> where <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Factor.

Since both terms are perfect squares, factor using the difference of squares formula, <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>)</mo></mrow><mrow><mo>(</mo><mi>a</mi><mo>-</mo><mi>b</mi><mo>)</mo></mrow></mstyle></math> where <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><mi>x</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mn>1</mn></mstyle></math> .

Remove unnecessary parentheses.

Do you know how to Factor x^4-1? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | five hundred eighty-six million one hundred forty-two thousand one hundred eighty-one |
---|

- 586142181 has 4 divisors, whose sum is
**651269100** - The reverse of 586142181 is
**181241685** - Previous prime number is
**9**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 36
- Digital Root 9

Name | four hundred ninety-one million five hundred ninety-eight thousand two hundred twenty-seven |
---|

- 491598227 has 8 divisors, whose sum is
**509078640** - The reverse of 491598227 is
**722895194** - Previous prime number is
**1021**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 47
- Digital Root 2

Name | four hundred fifty-two million four hundred fifty-nine thousand four hundred fifty-three |
---|

- 452459453 has 4 divisors, whose sum is
**453504828** - The reverse of 452459453 is
**354954254** - Previous prime number is
**433**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 41
- Digital Root 5