Rewrite <math><mstyle displaystyle="true"><mn>27</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></msup></mstyle></math> .

Since both terms are perfect cubes, factor using the sum of cubes formula, <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>=</mo><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>)</mo></mrow><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><mi>a</mi><mi>b</mi><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mstyle></math> where <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><mi>x</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mn>3</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Do you know how to Factor x^3+27? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.