Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>18</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>18</mn><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>18</mn><mo>)</mo></mrow></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt><mo>⋅</mo><msqrt><mn>18</mn></msqrt></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>18</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>⋅</mo><mn>2</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>18</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical.

Move <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mo>-</mo><mn>12</mn><mo>+</mo><mn>3</mn><mi>i</mi><msqrt><mn>2</mn></msqrt></mstyle></math> and <math><mstyle displaystyle="true"><mn>60</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>12</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>3</mn><mi>i</mi><msqrt><mn>2</mn></msqrt></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>3</mn><mo>⋅</mo><mo>-</mo><mn>4</mn><mo>+</mo><mn>3</mn><mrow><mo>(</mo><mi>i</mi><msqrt><mn>2</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Cancel the common factors.

Factor <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>60</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mi>i</mi><msqrt><mn>2</mn></msqrt></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><mo>-</mo><mi>i</mi><msqrt><mn>2</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Move the negative in front of the fraction.

Do you know how to Evaluate (-12+ square root of -18)/60? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion two hundred fifty-six million three hundred thirteen thousand six hundred fifty-three |
---|

- 1256313653 has 8 divisors, whose sum is
**1436837760** - The reverse of 1256313653 is
**3563136521** - Previous prime number is
**1381**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 35
- Digital Root 8

Name | one hundred eighty-eight million four hundred forty-two thousand one hundred thirty-two |
---|

- 188442132 has 32 divisors, whose sum is
**568717632** - The reverse of 188442132 is
**231244881** - Previous prime number is
**167**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 33
- Digital Root 6

Name | one billion one hundred ninety-eight million nine hundred seventeen thousand one hundred thirteen |
---|

- 1198917113 has 4 divisors, whose sum is
**1251043968** - The reverse of 1198917113 is
**3117198911** - Previous prime number is
**23**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 41
- Digital Root 5