Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>75</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>75</mn><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>75</mn><mo>)</mo></mrow></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt><mo>⋅</mo><msqrt><mn>75</mn></msqrt></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>75</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>⋅</mo><mn>3</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>25</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>75</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>25</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>5</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical.

Move <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mo>-</mo><mn>20</mn><mo>+</mo><mn>5</mn><mi>i</mi><msqrt><mn>3</mn></msqrt></mstyle></math> and <math><mstyle displaystyle="true"><mn>40</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>20</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>5</mn><mi>i</mi><msqrt><mn>3</mn></msqrt></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>5</mn><mo>⋅</mo><mo>-</mo><mn>4</mn><mo>+</mo><mn>5</mn><mrow><mo>(</mo><mi>i</mi><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Cancel the common factors.

Factor <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>40</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mi>i</mi><msqrt><mn>3</mn></msqrt></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><mo>-</mo><mi>i</mi><msqrt><mn>3</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Move the negative in front of the fraction.

Do you know how to Evaluate (-20+ square root of -75)/40? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion eight hundred twenty-seven million three hundred fifty-two thousand five hundred fifty |
---|

- 1827352550 has 32 divisors, whose sum is
**3386665728** - The reverse of 1827352550 is
**0552537281** - Previous prime number is
**53**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 38
- Digital Root 2

Name | eight hundred fifty-three million nine hundred twenty-eight thousand one hundred eighty-seven |
---|

- 853928187 has 16 divisors, whose sum is
**1302282240** - The reverse of 853928187 is
**781829358** - Previous prime number is
**1279**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 51
- Digital Root 6

Name | two hundred seventy-four million eight hundred thirty-three thousand thirty-one |
---|

- 274833031 has 16 divisors, whose sum is
**304197120** - The reverse of 274833031 is
**130338472** - Previous prime number is
**239**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 31
- Digital Root 4