Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>45</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>45</mn><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>45</mn><mo>)</mo></mrow></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt><mo>⋅</mo><msqrt><mn>45</mn></msqrt></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>45</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup><mo>⋅</mo><mn>5</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>45</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical.

Move <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mo>-</mo><mn>12</mn><mo>+</mo><mn>3</mn><mi>i</mi><msqrt><mn>5</mn></msqrt></mstyle></math> and <math><mstyle displaystyle="true"><mn>24</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>12</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>3</mn><mi>i</mi><msqrt><mn>5</mn></msqrt></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>3</mn><mo>⋅</mo><mo>-</mo><mn>4</mn><mo>+</mo><mn>3</mn><mrow><mo>(</mo><mi>i</mi><msqrt><mn>5</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Cancel the common factors.

Factor <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>24</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mi>i</mi><msqrt><mn>5</mn></msqrt></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mo>-</mo><mrow><mo>(</mo><mo>-</mo><mi>i</mi><msqrt><mn>5</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Move the negative in front of the fraction.

Do you know how to Evaluate (-12+ square root of -45)/24? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion six hundred ninety-five million six hundred twenty-one thousand seven hundred ninety-three |
---|

- 1695621793 has 8 divisors, whose sum is
**1776297600** - The reverse of 1695621793 is
**3971265961** - Previous prime number is
**79**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 49
- Digital Root 4

Name | one billion nine million four hundred ninety-three thousand ninety-four |
---|

- 1009493094 has 16 divisors, whose sum is
**2024808768** - The reverse of 1009493094 is
**4903949001** - Previous prime number is
**347**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 39
- Digital Root 3

Name | one billion eight hundred eighty million five hundred eighty-six thousand one hundred fifty-three |
---|

- 1880586153 has 16 divisors, whose sum is
**3714738240** - The reverse of 1880586153 is
**3516850881** - Previous prime number is
**3**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 45
- Digital Root 9