Use the binomial expansion theorem to find each term. The binomial theorem states <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><mstyle displaystyle="true"><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover></mstyle><mo>⁡</mo><mi>n</mi><mi>C</mi><mi>k</mi><mo>⋅</mo><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mo>-</mo><mi>k</mi></mrow></msup><msup><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></mrow></mstyle></math> .

Expand the summation.

Simplify the exponents for each term of the expansion.

Multiply <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Anything raised to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify.

Evaluate the exponent.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mn>0</mn></mrow></msup></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Anything raised to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Do you know how to Expand using the Binomial Theorem (x+3)^2? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one hundred twenty-one million seven hundred fifty-three thousand five hundred sixty-six |
---|

- 121753566 has 16 divisors, whose sum is
**221370480** - The reverse of 121753566 is
**665357121** - Previous prime number is
**11**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 36
- Digital Root 9

Name | one billion seven hundred fifty-five million two hundred ninety-six thousand eighty-eight |
---|

- 1755296088 has 256 divisors, whose sum is
**9748118016** - The reverse of 1755296088 is
**8806925571** - Previous prime number is
**467**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 51
- Digital Root 6

Name | one billion two hundred eighteen million nine hundred thirty thousand seven hundred eighty-eight |
---|

- 1218930788 has 32 divisors, whose sum is
**2980074240** - The reverse of 1218930788 is
**8870398121** - Previous prime number is
**31**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 47
- Digital Root 2