Rewrite <math><mstyle displaystyle="true"><mn>64</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>8</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Check that the middle term is two times the product of the numbers being squared in the first term and third term.

Rewrite the polynomial.

Factor using the perfect square trinomial rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>b</mi><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mo>(</mo><mi>a</mi><mo>-</mo><mi>b</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> , where <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><mi>x</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mn>8</mn></mstyle></math> .

Do you know how to Factor x^2-16x+64? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion nine hundred forty-three million nine hundred sixty-nine thousand four hundred eleven |
---|

- 1943969411 has 4 divisors, whose sum is
**1975837824** - The reverse of 1943969411 is
**1149693491** - Previous prime number is
**61**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 47
- Digital Root 2

Name | two hundred seventy-eight million four hundred seventy-two thousand five hundred sixty-five |
---|

- 278472565 has 16 divisors, whose sum is
**382187520** - The reverse of 278472565 is
**565274872** - Previous prime number is
**2111**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 46
- Digital Root 1

Name | one billion five hundred sixteen million seven hundred fifty-seven thousand eight hundred fifty-eight |
---|

- 1516757858 has 32 divisors, whose sum is
**3241755648** - The reverse of 1516757858 is
**8587576151** - Previous prime number is
**11**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 53
- Digital Root 8