Use the binomial expansion theorem to find each term. The binomial theorem states <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><mstyle displaystyle="true"><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover></mstyle><mo>⁡</mo><mi>n</mi><mi>C</mi><mi>k</mi><mo>⋅</mo><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi><mo>-</mo><mi>k</mi></mrow></msup><msup><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo></mrow></mstyle></math> .

Expand the summation.

Simplify the exponents for each term of the expansion.

Multiply <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Anything raised to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify.

Evaluate the exponent.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mn>0</mn></mrow></msup></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Anything raised to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mo>-</mo><mn>3</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Do you know how to Expand using the Binomial Theorem (x-3)^2? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion five hundred thirty-nine million three hundred fifty-five thousand nine hundred nineteen |
---|

- 1539355919 has 4 divisors, whose sum is
**1539606600** - The reverse of 1539355919 is
**9195539351** - Previous prime number is
**6299**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 50
- Digital Root 5

Name | four hundred twenty-seven million two hundred forty-four thousand three hundred ninety-seven |
---|

- 427244397 has 8 divisors, whose sum is
**569922144** - The reverse of 427244397 is
**793442724** - Previous prime number is
**2243**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 42
- Digital Root 6

Name | one billion three hundred fifty-six million five hundred eighty-four thousand five hundred eight |
---|

- 1356584508 has 32 divisors, whose sum is
**3404380320** - The reverse of 1356584508 is
**8054856531** - Previous prime number is
**263**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 45
- Digital Root 9