To find the <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> coordinate of the vertex, set the inside of the absolute value <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> . In this case, <math><mstyle displaystyle="true"><mi>x</mi><mo>=</mo><mn>0</mn></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> in the expression.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The absolute value vertex is <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> .

The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.

Interval Notation:

Set-Builder Notation:

Substitute the <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> value <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn></mstyle></math> into <math><mstyle displaystyle="true"><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mstyle></math> . In this case, the point is <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn></mstyle></math> in the expression.

Simplify the result.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Substitute the <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> value <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> into <math><mstyle displaystyle="true"><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mstyle></math> . In this case, the point is <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> in the expression.

Simplify the result.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Substitute the <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> value <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> into <math><mstyle displaystyle="true"><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mstyle></math> . In this case, the point is <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mstyle></math> .

Replace the variable <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> in the expression.

Simplify the result.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

The final answer is <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

The absolute value can be graphed using the points around the vertex <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mo>-</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>,</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mstyle></math>

Do you know how to Graph y=|x|? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion eight hundred four million eight hundred fifty-four thousand one hundred sixty-nine |
---|

- 1804854169 has 4 divisors, whose sum is
**1805518260** - The reverse of 1804854169 is
**9614584081** - Previous prime number is
**2729**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 46
- Digital Root 1

Name | seven hundred sixty-two million nine hundred forty-four thousand nine hundred nineteen |
---|

- 762944919 has 8 divisors, whose sum is
**788000320** - The reverse of 762944919 is
**919449267** - Previous prime number is
**409**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 51
- Digital Root 6

Name | one billion nine hundred sixty-two million four hundred nineteen thousand one hundred ninety-four |
---|

- 1962419194 has 8 divisors, whose sum is
**2944303488** - The reverse of 1962419194 is
**4919142691** - Previous prime number is
**4451**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 46
- Digital Root 1