Use the quadratic formula to find the solutions.

Substitute the values <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><mn>1</mn></mstyle></math> , <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mo>-</mo><mn>8</mn></mstyle></math> , and <math><mstyle displaystyle="true"><mi>c</mi><mo>=</mo><mn>15</mn></mstyle></math> into the quadratic formula and solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Simplify the numerator.

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>8</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>15</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>60</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>64</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify <math><mstyle displaystyle="true"><mfrac><mrow><mn>8</mn><mo>±</mo><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

The final answer is the combination of both solutions.

Do you know how to Solve Using the Quadratic Formula x^2-8x+15=0? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.