To remove the radical on the left side of the equation, square both sides of the equation.

Multiply the exponents in <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mo>(</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>12</mn><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Simplify.

Simplify <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>6</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>6</mn><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>6</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>6</mn><mo>)</mo></mrow></mstyle></math> .

Expand <math><mstyle displaystyle="true"><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>6</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>6</mn><mo>)</mo></mrow></mstyle></math> using the FOIL Method.

Apply the distributive property.

Apply the distributive property.

Apply the distributive property.

Simplify and combine like terms.

Simplify each term.

Multiply <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Move <math><mstyle displaystyle="true"><mo>-</mo><mn>6</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>6</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>6</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>6</mn><mi>x</mi></mstyle></math> from <math><mstyle displaystyle="true"><mo>-</mo><mn>6</mn><mi>x</mi></mstyle></math> .

Since <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> is on the right side of the equation, switch the sides so it is on the left side of the equation.

Move all terms containing <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> to the left side of the equation.

Subtract <math><mstyle displaystyle="true"><mn>2</mn><mi>x</mi></mstyle></math> from both sides of the equation.

Subtract <math><mstyle displaystyle="true"><mn>2</mn><mi>x</mi></mstyle></math> from <math><mstyle displaystyle="true"><mo>-</mo><mn>12</mn><mi>x</mi></mstyle></math> .

Move <math><mstyle displaystyle="true"><mn>12</mn></mstyle></math> to the left side of the equation by subtracting it from both sides.

Subtract <math><mstyle displaystyle="true"><mn>12</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>36</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><mn>14</mn><mi>x</mi><mo>+</mo><mn>24</mn></mstyle></math> using the AC method.

Consider the form <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></mstyle></math> . Find a pair of integers whose product is <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and whose sum is <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> . In this case, whose product is <math><mstyle displaystyle="true"><mn>24</mn></mstyle></math> and whose sum is <math><mstyle displaystyle="true"><mo>-</mo><mn>14</mn></mstyle></math> .

Write the factored form using these integers.

If any individual factor on the left side of the equation is equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> , the entire expression will be equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Set the first factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and solve.

Set the first factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>12</mn></mstyle></math> to both sides of the equation.

Set the next factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and solve.

Set the next factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> to both sides of the equation.

The final solution is all the values that make <math><mstyle displaystyle="true"><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>12</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>2</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> true.

Exclude the solutions that do not make <math><mstyle displaystyle="true"><msqrt><mn>2</mn><mi>x</mi><mo>+</mo><mn>12</mn></msqrt><mo>=</mo><mi>x</mi><mo>-</mo><mn>6</mn></mstyle></math> true.

Do you know how to Solve for x square root of 2x+12=x-6? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion six hundred twenty-eight million seven hundred fifty-seven thousand one hundred seventy-three |
---|

- 1628757173 has 8 divisors, whose sum is
**1633020480** - The reverse of 1628757173 is
**3717578261** - Previous prime number is
**1091**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 47
- Digital Root 2

Name | one billion eight hundred ten million eight hundred ninety-three thousand fifty-seven |
---|

- 1810893057 has 32 divisors, whose sum is
**2601849600** - The reverse of 1810893057 is
**7503980181** - Previous prime number is
**89**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 42
- Digital Root 6

Name | three hundred forty million seven hundred eleven thousand one hundred two |
---|

- 340711102 has 8 divisors, whose sum is
**511165512** - The reverse of 340711102 is
**201117043** - Previous prime number is
**26531**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 19
- Digital Root 1