Apply the distributive property.

Apply the distributive property.

Apply the distributive property.

Simplify each term.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mi>i</mi><mi>i</mi></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mo>-</mo><mn>8</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>4</mn><mi>i</mi></mstyle></math> from <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn><mi>i</mi></mstyle></math> .

Do you know how to Simplify (-2-i)(4+i)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.