Reorder <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> and <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical.

Rewrite using the commutative property of multiplication.

Combine using the product rule for radicals.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>18</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Add parentheses.

Pull terms out from under the radical.

Do you know how to Simplify square root of 6x* square root of 3x^2? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion three hundred seventy-two million three hundred seventy-three thousand eight hundred ninety |
---|

- 1372373890 has 8 divisors, whose sum is
**2076461712** - The reverse of 1372373890 is
**0983732731** - Previous prime number is
**115**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 43
- Digital Root 7

Name | one billion fourteen million three hundred eighteen thousand four hundred eighty-four |
---|

- 1014318484 has 16 divisors, whose sum is
**2303546688** - The reverse of 1014318484 is
**4848134101** - Previous prime number is
**107**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 34
- Digital Root 7

Name | five hundred eleven million five hundred fifty-two thousand seven hundred ninety-four |
---|

- 511552794 has 32 divisors, whose sum is
**1052580096** - The reverse of 511552794 is
**497255115** - Previous prime number is
**47**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 39
- Digital Root 3