For a polynomial of the form <math><mstyle displaystyle="true"><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></mstyle></math> , rewrite the middle term as a sum of two terms whose product is <math><mstyle displaystyle="true"><mi>a</mi><mo>⋅</mo><mi>c</mi><mo>=</mo><mn>2</mn><mo>⋅</mo><mo>-</mo><mn>5</mn><mo>=</mo><mo>-</mo><mn>10</mn></mstyle></math> and whose sum is <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mn>9</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>9</mn><mi>x</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> plus <math><mstyle displaystyle="true"><mn>10</mn></mstyle></math>

Apply the distributive property.

Factor out the greatest common factor from each group.

Group the first two terms and the last two terms.

Factor out the greatest common factor (GCF) from each group.

Factor the polynomial by factoring out the greatest common factor, <math><mstyle displaystyle="true"><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn></mstyle></math> .

If any individual factor on the left side of the equation is equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> , the entire expression will be equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Set the first factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> to both sides of the equation.

Divide each term by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> and simplify.

Divide each term in <math><mstyle displaystyle="true"><mn>2</mn><mi>x</mi><mo>=</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Set the next factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> from both sides of the equation.

The final solution is all the values that make <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>2</mn><mi>x</mi><mo>-</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>+</mo><mn>5</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> true.

Do you know how to Solve by Factoring 2x^2+9x-5=0? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | ten million five hundred ninety-two thousand forty-four |
---|

- 10592044 has 16 divisors, whose sum is
**25086600** - The reverse of 10592044 is
**44029501** - Previous prime number is
**19**

- Is Prime? no
- Number parity even
- Number length 8
- Sum of Digits 25
- Digital Root 7

Name | seven hundred eighty-three million three hundred fifty-eight thousand four hundred |
---|

- 783358400 has 512 divisors, whose sum is
**9155586816** - The reverse of 783358400 is
**004853387** - Previous prime number is
**47**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 38
- Digital Root 2

Name | one billion eight hundred thirty-three million four hundred eighty-six thousand two hundred sixty-four |
---|

- 1833486264 has 128 divisors, whose sum is
**11049478272** - The reverse of 1833486264 is
**4626843381** - Previous prime number is
**227**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 45
- Digital Root 9