Combine <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Move <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mfrac><mrow><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Check that the middle term is two times the product of the numbers being squared in the first term and third term.

Rewrite the polynomial.

Factor using the perfect square trinomial rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>b</mi><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mo>(</mo><mi>a</mi><mo>-</mo><mi>b</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> , where <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><mi>x</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Do you know how to Factor x^2-2/3x+1/9? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion five hundred nineteen million sixty-five thousand three hundred fifty |
---|

- 1519065350 has 32 divisors, whose sum is
**2815404480** - The reverse of 1519065350 is
**0535609151** - Previous prime number is
**89**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 35
- Digital Root 8

Name | five hundred fifty-three million six hundred sixteen thousand seven hundred thirty-three |
---|

- 553616733 has 4 divisors, whose sum is
**555519488** - The reverse of 553616733 is
**337616355** - Previous prime number is
**291**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 39
- Digital Root 3

Name | seven hundred five million one hundred twenty-one thousand nine hundred twenty-one |
---|

- 705121921 has 16 divisors, whose sum is
**728377920** - The reverse of 705121921 is
**129121507** - Previous prime number is
**59**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 28
- Digital Root 1