Combine <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Move <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mfrac><mrow><msup><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Check that the middle term is two times the product of the numbers being squared in the first term and third term.

Rewrite the polynomial.

Factor using the perfect square trinomial rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>-</mo><mn>2</mn><mi>a</mi><mi>b</mi><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mo>(</mo><mi>a</mi><mo>-</mo><mi>b</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> , where <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><mi>x</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Do you know how to Factor x^2-2/3x+1/9? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion three hundred fifty-one million eight hundred sixty-five thousand eight hundred twenty-eight |
---|

- 1351865828 has 16 divisors, whose sum is
**3042412164** - The reverse of 1351865828 is
**8285681531** - Previous prime number is
**4517**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 47
- Digital Root 2

Name | two billion nineteen million four hundred fifty-five thousand eight hundred fifteen |
---|

- 2019455815 has 32 divisors, whose sum is
**2681392896** - The reverse of 2019455815 is
**5185549102** - Previous prime number is
**173**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 40
- Digital Root 4

Name | one billion six hundred thirty-four million ninety-three thousand three hundred forty-nine |
---|

- 1634093349 has 16 divisors, whose sum is
**2492757120** - The reverse of 1634093349 is
**9433904361** - Previous prime number is
**929**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 42
- Digital Root 6