Subtract <math><mstyle displaystyle="true"><mn>2</mn><mi>x</mi></mstyle></math> from both sides of the equation.

Use the quadratic formula to find the solutions.

Substitute the values <math><mstyle displaystyle="true"><mi>a</mi><mo>=</mo><mn>1</mn></mstyle></math> , <math><mstyle displaystyle="true"><mi>b</mi><mo>=</mo><mo>-</mo><mn>2</mn></mstyle></math> , and <math><mstyle displaystyle="true"><mi>c</mi><mo>=</mo><mn>5</mn></mstyle></math> into the quadratic formula and solve for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Simplify the numerator.

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>20</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>16</mn></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>16</mn><mo>)</mo></mrow></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn><mrow><mo>(</mo><mn>16</mn><mo>)</mo></mrow></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt><mo>⋅</mo><msqrt><mn>16</mn></msqrt></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mo>-</mo><mn>1</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mn>16</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>4</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Move <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mo>±</mo><mn>4</mn><mi>i</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Do you know how to Solve Using the Quadratic Formula x^2+5=2x? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | nine hundred fifty-four million seven hundred seventy-eight thousand six hundred two |
---|

- 954778602 has 8 divisors, whose sum is
**1909557216** - The reverse of 954778602 is
**206877459** - Previous prime number is
**3**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 48
- Digital Root 3

Name | nine hundred sixteen million one hundred twenty-eight thousand four hundred forty-two |
---|

- 916128442 has 8 divisors, whose sum is
**1389633300** - The reverse of 916128442 is
**244821619** - Previous prime number is
**89**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 37
- Digital Root 1

Name | five hundred twenty-eight million forty-eight thousand seven hundred seventy-four |
---|

- 528048774 has 64 divisors, whose sum is
**1291610880** - The reverse of 528048774 is
**477840825** - Previous prime number is
**113**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 45
- Digital Root 9