Divide each term in <math><mstyle displaystyle="true"><mo>-</mo><mn>5</mn><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>11</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>5</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mo>-</mo><mn>5</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Move the negative in front of the fraction.

Take the square root of both sides of the equation to eliminate the exponent on the left side.

Simplify the right side of the equation.

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical.

Rewrite <math><mstyle displaystyle="true"><msqrt><mfrac><mrow><mn>11</mn></mrow><mrow><mn>5</mn></mrow></mfrac></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>11</mn></msqrt></mrow><mrow><msqrt><mn>5</mn></msqrt></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>11</mn></msqrt></mrow><mrow><msqrt><mn>5</mn></msqrt></mrow></mfrac></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>5</mn></msqrt></mrow><mrow><msqrt><mn>5</mn></msqrt></mrow></mfrac></mstyle></math> .

Combine and simplify the denominator.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>11</mn></msqrt></mrow><mrow><msqrt><mn>5</mn></msqrt></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>5</mn></msqrt></mrow><mrow><msqrt><mn>5</mn></msqrt></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>5</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><msqrt><mn>5</mn></msqrt></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Use the power rule <math><mstyle displaystyle="true"><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><msup><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mo>+</mo><mi>n</mi></mrow></msup></mstyle></math> to combine exponents.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>5</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mn>5</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>5</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Evaluate the exponent.

Simplify the numerator.

Combine using the product rule for radicals.

Multiply <math><mstyle displaystyle="true"><mn>11</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mi>i</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>55</mn></msqrt></mrow><mrow><mn>5</mn></mrow></mfrac></mstyle></math> .

The complete solution is the result of both the positive and negative portions of the solution.

First, use the positive value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the first solution.

Next, use the negative value of the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to find the second solution.

The complete solution is the result of both the positive and negative portions of the solution.

Do you know how to Solve Using the Square Root Property -5x^2=11? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion four hundred seventy-six million six hundred eleven thousand eight |
---|

- 1476611008 has 256 divisors, whose sum is
**16829122464** - The reverse of 1476611008 is
**8001166741** - Previous prime number is
**2081**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 34
- Digital Root 7

Name | eight hundred sixty-seven million six hundred thirty-three thousand three hundred sixty-nine |
---|

- 867633369 has 16 divisors, whose sum is
**1225752768** - The reverse of 867633369 is
**963336768** - Previous prime number is
**1657**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 51
- Digital Root 6

Name | six hundred one million eight hundred sixty-four thousand two hundred forty-eight |
---|

- 601864248 has 32 divisors, whose sum is
**2708389224** - The reverse of 601864248 is
**842468106** - Previous prime number is
**3**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 39
- Digital Root 3