To find the interval for the first piece, find where the inside of the absolute value is non-negative.

In the piece where <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> is non-negative, remove the absolute value.

To find the interval for the second piece, find where the inside of the absolute value is negative.

In the piece where <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> is negative, remove the absolute value and multiply by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Write as a piecewise.

Find the intersection of <math><mstyle displaystyle="true"><mi>x</mi><mo>></mo><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mi>x</mi><mo>≥</mo><mn>0</mn></mstyle></math> .

Multiply each term in <math><mstyle displaystyle="true"><mo>-</mo><mi>x</mi><mo>></mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math>

Multiply each term in <math><mstyle displaystyle="true"><mo>-</mo><mi>x</mi><mo>></mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> . When multiplying or dividing both sides of an inequality by a negative value, flip the direction of the inequality sign.

Multiply <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mi>x</mi><mo>)</mo></mrow><mo>⋅</mo><mo>-</mo><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Find the intersection of <math><mstyle displaystyle="true"><mi>x</mi><mo><</mo><mo>-</mo><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mi>x</mi><mo><</mo><mn>0</mn></mstyle></math> .

Find the union of the solutions.

Convert the inequality to interval notation.

Do you know how to Convert to Interval Notation |x|>1? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion four hundred ninety-six million eight hundred sixty-three thousand one hundred sixty-four |
---|

- 1496863164 has 64 divisors, whose sum is
**4524405984** - The reverse of 1496863164 is
**4613686941** - Previous prime number is
**1453**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 48
- Digital Root 3

Name | one billion five hundred seventy-four million six hundred twenty-three thousand two hundred twenty-six |
---|

- 1574623226 has 8 divisors, whose sum is
**2576656224** - The reverse of 1574623226 is
**6223264751** - Previous prime number is
**11**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 38
- Digital Root 2

Name | three hundred seventeen million four hundred eighty-four thousand six hundred eighty-five |
---|

- 317484685 has 8 divisors, whose sum is
**326866752** - The reverse of 317484685 is
**586484713** - Previous prime number is
**1223**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 46
- Digital Root 1