# Identify the Zeros and Their Multiplicities x^2(x-100)(x-200)

Identify the Zeros and Their Multiplicities x^2(x-100)(x-200)
To find the roots/zeros, set equal to and solve.
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Set the first factor equal to and solve.
Set the first factor equal to .
Take the square root of both sides of the equation to eliminate the exponent on the left side.
The complete solution is the result of both the positive and negative portions of the solution.
Simplify the right side of the equation.
Rewrite as .
Pull terms out from under the radical, assuming positive real numbers.
is equal to .
Set the next factor equal to and solve.
Set the next factor equal to .
Add to both sides of the equation.
Set the next factor equal to and solve.
Set the next factor equal to .
Add to both sides of the equation.
The final solution is all the values that make true. The multiplicity of a root is the number of times the root appears.
(Multiplicity of )
(Multiplicity of )
(Multiplicity of )
Do you know how to Identify the Zeros and Their Multiplicities x^2(x-100)(x-200)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.