To find the roots/zeros, set <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>100</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>200</mn><mo>)</mo></mrow></mstyle></math> equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and solve.

If any individual factor on the left side of the equation is equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> , the entire expression will be equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Set the first factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Take the square root of both sides of the equation to eliminate the exponent on the left side.

The complete solution is the result of both the positive and negative portions of the solution.

Simplify the right side of the equation.

Rewrite <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>0</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Set the next factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>100</mn></mstyle></math> to both sides of the equation.

Set the next factor equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>200</mn></mstyle></math> to both sides of the equation.

The final solution is all the values that make <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>100</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mn>200</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> true. The multiplicity of a root is the number of times the root appears.

Do you know how to Identify the Zeros and Their Multiplicities x^2(x-100)(x-200)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.