Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>cos</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Find the amplitude <math><mstyle displaystyle="true"><mrow><mo>|</mo><mi>a</mi><mo>|</mo></mrow></mstyle></math> .

Amplitude: <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math>

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> in the formula for period.

Multiply the numerator by the reciprocal of the denominator.

Cancel the common factor of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>0</mn></mrow><mrow><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></mfrac></mstyle></math>

Multiply the numerator by the reciprocal of the denominator.

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn><mrow><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mi>π</mi></mrow></mfrac><mo>)</mo></mrow></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mi>π</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

List the properties of the trigonometric function.

Amplitude: <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math>

Period: <math><mstyle displaystyle="true"><mn>6</mn></mstyle></math>

Phase Shift: None

Vertical Shift: None

Do you know how to Find Amplitude, Period, and Phase Shift y=cos((xpi)/3)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion nine hundred seventy-one million eight hundred forty-one thousand four hundred twenty-eight |
---|

- 1971841428 has 128 divisors, whose sum is
**5132574720** - The reverse of 1971841428 is
**8241481791** - Previous prime number is
**31**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 45
- Digital Root 9

Name | one billion three hundred thirty-two million four hundred twelve thousand six hundred ninety-seven |
---|

- 1332412697 has 8 divisors, whose sum is
**1661189952** - The reverse of 1332412697 is
**7962142331** - Previous prime number is
**7**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 38
- Digital Root 2

Name | four hundred eighty-five million two hundred eleven thousand seven hundred seventy-three |
---|

- 485211773 has 8 divisors, whose sum is
**517158720** - The reverse of 485211773 is
**377112584** - Previous prime number is
**17**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 38
- Digital Root 2