Use the sum formula for sine to simplify the expression. The formula states that <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo>)</mo></mrow><mo>=</mo><mi>sin</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>+</mo><mi>cos</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi>sin</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mstyle></math> .

Remove parentheses.

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because cosine is negative in the second quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> from <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Do you know how to Expand Using Sum/Difference Formulas sin(pi+x)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | two billion one hundred twenty-six million nine hundred ninety-one thousand nine hundred seventy-one |
---|

- 2126991971 has 8 divisors, whose sum is
**2319602880** - The reverse of 2126991971 is
**1791996212** - Previous prime number is
**79**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 47
- Digital Root 2

Name | six hundred ninety-eight million seven hundred forty-eight thousand one hundred nineteen |
---|

- 698748119 has 8 divisors, whose sum is
**729555552** - The reverse of 698748119 is
**911847896** - Previous prime number is
**15881**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 53
- Digital Root 8

Name | one billion eight hundred seventy-four million one hundred sixty-eight thousand four hundred twenty-six |
---|

- 1874168426 has 64 divisors, whose sum is
**3624714240** - The reverse of 1874168426 is
**6248614781** - Previous prime number is
**13**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 47
- Digital Root 2