Use the sum formula for tangent to simplify the expression. The formula states that <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>tan</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mo>+</mo><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>-</mo><mi>tan</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mrow></mfrac></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.

The exact value of <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mi>tan</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>⋅</mo><mn>0</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Do you know how to Expand Using Sum/Difference Formulas tan(u+pi)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion six hundred nineteen million three hundred seventy-four thousand three hundred thirty-seven |
---|

- 1619374337 has 16 divisors, whose sum is
**1860019200** - The reverse of 1619374337 is
**7334739161** - Previous prime number is
**467**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 44
- Digital Root 8

Name | five hundred forty-nine million four hundred four thousand one hundred seventy-two |
---|

- 549404172 has 16 divisors, whose sum is
**1237158792** - The reverse of 549404172 is
**271404945** - Previous prime number is
**1251**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 36
- Digital Root 9

Name | one billion two hundred twenty-two million two hundred forty-nine thousand ninety-nine |
---|

- 1222249099 has 4 divisors, whose sum is
**1222387120** - The reverse of 1222249099 is
**9909422221** - Previous prime number is
**9511**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 40
- Digital Root 4