Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>sin</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Find the amplitude <math><mstyle displaystyle="true"><mrow><mo>|</mo><mi>a</mi><mo>|</mo></mrow></mstyle></math> .

Amplitude: <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math>

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mfrac><mrow><mn>8</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> in the formula for period.

Multiply the numerator by the reciprocal of the denominator.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mn>8</mn><mi>π</mi></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow><mrow><mfrac><mrow><mn>8</mn><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></mfrac></mstyle></math>

Multiply the numerator by the reciprocal of the denominator.

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>8</mn><mi>π</mi></mrow></mfrac></mstyle></math>

Cancel the common factor of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

Move the leading negative in <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> into the numerator.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mi>π</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>8</mn><mi>π</mi></mrow></mfrac></mstyle></math>

Factor <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mo>-</mo><mi>π</mi></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi><mo>⋅</mo><mo>-</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>8</mn><mi>π</mi></mrow></mfrac></mstyle></math>

Factor <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> out of <math><mstyle displaystyle="true"><mn>8</mn><mi>π</mi></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi><mo>⋅</mo><mo>-</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mi>π</mi><mo>⋅</mo><mn>8</mn></mrow></mfrac></mstyle></math>

Cancel the common factor.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><menclose notation="updiagonalstrike"><mi>π</mi></menclose><mo>⋅</mo><mo>-</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>3</mn></mrow><mrow><menclose notation="updiagonalstrike"><mi>π</mi></menclose><mo>⋅</mo><mn>8</mn></mrow></mfrac></mstyle></math>

Rewrite the expression.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>8</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>8</mn></mrow></mfrac></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>8</mn></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>1</mn><mo>⋅</mo><mn>3</mn></mrow><mrow><mn>2</mn><mo>⋅</mo><mn>8</mn></mrow></mfrac></mstyle></math>

Simplify the expression.

Multiply <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>3</mn></mrow><mrow><mn>2</mn><mo>⋅</mo><mn>8</mn></mrow></mfrac></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>8</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mn>3</mn></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math>

Move the negative in front of the fraction.

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math>

List the properties of the trigonometric function.

Amplitude: <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math>

Period: <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math> (<math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>16</mn></mrow></mfrac></mstyle></math> to the left)

Vertical Shift: None

Do you know how to Find Amplitude, Period, and Phase Shift y=sin((8pix)/3+pi/2)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion eight hundred twenty-nine million nine hundred twelve thousand four hundred nine |
---|

- 1829912409 has 8 divisors, whose sum is
**2189638920** - The reverse of 1829912409 is
**9042199281** - Previous prime number is
**13**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 45
- Digital Root 9

Name | nine hundred fourteen million two hundred sixty thousand five hundred twenty-four |
---|

- 914260524 has 32 divisors, whose sum is
**2747234880** - The reverse of 914260524 is
**425062419** - Previous prime number is
**619**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 33
- Digital Root 6

Name | one billion six hundred thirty million one hundred eight thousand one hundred twenty |
---|

- 1630108120 has 64 divisors, whose sum is
**6685519680** - The reverse of 1630108120 is
**0218010361** - Previous prime number is
**79**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 22
- Digital Root 4