Rewrite the expression as <math><mstyle displaystyle="true"><mo>-</mo><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow><mo>+</mo><mn>2</mn></mstyle></math> .

Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>sin</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Find the amplitude <math><mstyle displaystyle="true"><mrow><mo>|</mo><mi>a</mi><mo>|</mo></mrow></mstyle></math> .

Amplitude: <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math>

Find the period of <math><mstyle displaystyle="true"><mo>-</mo><mi>sin</mi><mrow><mo>(</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo></mrow></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> in the formula for period.

Multiply the numerator by the reciprocal of the denominator.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Find the period of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> in the formula for period.

Multiply the numerator by the reciprocal of the denominator.

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

The period of addition/subtraction of trig functions is the maximum of the individual periods.

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mn>0</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></mfrac></mstyle></math>

Multiply the numerator by the reciprocal of the denominator.

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn><mo>⋅</mo><mn>2</mn></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math>

List the properties of the trigonometric function.

Amplitude: <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math>

Period: <math><mstyle displaystyle="true"><mn>4</mn><mi>π</mi></mstyle></math>

Phase Shift: None

Vertical Shift: <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math>

Do you know how to Find Amplitude, Period, and Phase Shift f(x)=2-sin(1/2x)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion five hundred thirty-eight million three hundred eighty-seven thousand seven hundred twenty-two |
---|

- 1538387722 has 8 divisors, whose sum is
**2307951972** - The reverse of 1538387722 is
**2277838351** - Previous prime number is
**6581**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 46
- Digital Root 1

Name | one billion two hundred ninety-six million nine hundred sixty thousand four hundred ninety-two |
---|

- 1296960492 has 16 divisors, whose sum is
**3890881512** - The reverse of 1296960492 is
**2940696921** - Previous prime number is
**3**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 48
- Digital Root 3

Name | two billion forty-four million ninety-seven thousand nine hundred eighty-three |
---|

- 2044097983 has 4 divisors, whose sum is
**2077607848** - The reverse of 2044097983 is
**3897904402** - Previous prime number is
**61**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 46
- Digital Root 1