To find the <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> between the x-axis and the line between the points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>,</mo><msqrt><mn>2</mn></msqrt><mo>)</mo></mrow></mstyle></math> , draw the triangle between the three points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , and <math><mstyle displaystyle="true"><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>,</mo><msqrt><mn>2</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Opposite : <math><mstyle displaystyle="true"><msqrt><mn>2</mn></msqrt></mstyle></math>

Adjacent : <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math>

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mn>2</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Evaluate the exponent.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Move the negative one from the denominator of <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>3</mn></msqrt></mrow><mrow><mo>-</mo><mn>1</mn></mrow></mfrac></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn><mo>⋅</mo><msqrt><mn>3</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mo>-</mo><msqrt><mn>3</mn></msqrt></mstyle></math> .

Approximate the result.

Do you know how to Find the Secant Given the Point (-1, square root of 2)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | thirty million five hundred eighty thousand three hundred ninety-eight |
---|

- 30580398 has 16 divisors, whose sum is
**51804720** - The reverse of 30580398 is
**89308503** - Previous prime number is
**61**

- Is Prime? no
- Number parity even
- Number length 8
- Sum of Digits 36
- Digital Root 9

Name | two billion ninety-seven million five hundred thirty-two thousand twenty-one |
---|

- 2097532021 has 16 divisors, whose sum is
**2285635968** - The reverse of 2097532021 is
**1202357902** - Previous prime number is
**107**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 31
- Digital Root 4

Name | four hundred two million one hundred eight thousand six hundred fifty-one |
---|

- 402108651 has 8 divisors, whose sum is
**461985760** - The reverse of 402108651 is
**156801204** - Previous prime number is
**7**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 27
- Digital Root 9