To find the <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> between the x-axis and the line between the points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>5</mn><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mo>-</mo><mn>2</mn><msqrt><mn>15</mn></msqrt><mo>)</mo></mrow></mstyle></math> , draw the triangle between the three points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>5</mn><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , and <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>5</mn><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>,</mo><mo>-</mo><mn>2</mn><msqrt><mn>15</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Opposite : <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn><msqrt><mn>15</mn></msqrt></mstyle></math>

Adjacent : <math><mstyle displaystyle="true"><mn>5</mn><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle></math>

Convert <math><mstyle displaystyle="true"><mn>5</mn><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle></math> to an improper fraction.

A mixed number is an addition of its whole and fractional parts.

Add <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

To write <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>10</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the expression.

Apply the product rule to <math><mstyle displaystyle="true"><mfrac><mrow><mn>11</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>11</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Apply the product rule to <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn><msqrt><mn>15</mn></msqrt></mstyle></math> .

Raise <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn></mstyle></math> to the power of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>15</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>15</mn></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mn>15</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>15</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Evaluate the exponent.

Multiply <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>15</mn></mstyle></math> .

To write <math><mstyle displaystyle="true"><mn>60</mn></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mn>60</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>4</mn></mrow><mrow><mn>4</mn></mrow></mfrac></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply <math><mstyle displaystyle="true"><mn>60</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>121</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>240</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mfrac><mrow><mn>361</mn></mrow><mrow><mn>4</mn></mrow></mfrac></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>361</mn></msqrt></mrow><mrow><msqrt><mn>4</mn></msqrt></mrow></mfrac></mstyle></math> .

Simplify the numerator.

Rewrite <math><mstyle displaystyle="true"><mn>361</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>19</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Simplify the denominator.

Rewrite <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

Convert <math><mstyle displaystyle="true"><mn>5</mn><mfrac><mn>1</mn><mn>2</mn></mfrac></mstyle></math> to an improper fraction.

A mixed number is an addition of its whole and fractional parts.

Add <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

To write <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>10</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Multiply the numerator by the reciprocal of the denominator.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Combine <math><mstyle displaystyle="true"><mn>19</mn></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>11</mn></mrow></mfrac></mstyle></math> .

Approximate the result.

Do you know how to Find the Secant Given the Point (5 1/2,-2 square root of 15)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | eight hundred ninety-six million nine hundred sixteen thousand three hundred fifty-six |
---|

- 896916356 has 32 divisors, whose sum is
**2427744960** - The reverse of 896916356 is
**653619698** - Previous prime number is
**19**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 53
- Digital Root 8

Name | one billion one hundred fifty-seven million five hundred seventy-two thousand five hundred thirty-nine |
---|

- 1157572539 has 128 divisors, whose sum is
**3443430400** - The reverse of 1157572539 is
**9352757511** - Previous prime number is
**61**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 45
- Digital Root 9

Name | nine hundred twenty million four hundred thousand two hundred seventeen |
---|

- 920400217 has 8 divisors, whose sum is
**1004303520** - The reverse of 920400217 is
**712004029** - Previous prime number is
**6673**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 25
- Digital Root 7