Take the inverse sine of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the sine.

Evaluate <math><mstyle displaystyle="true"><mi>arcsin</mi><mrow><mo>(</mo><mo>-</mo><mn>0.3</mn><mo>)</mo></mrow></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>1.5</mn></mstyle></math> from both sides of the equation.

Subtract <math><mstyle displaystyle="true"><mn>1.5</mn></mstyle></math> from <math><mstyle displaystyle="true"><mo>-</mo><mn>0.30469265</mn></mstyle></math> .

Divide each term in <math><mstyle displaystyle="true"><mn>2</mn><mi>x</mi><mo>=</mo><mo>-</mo><mn>1.80469265</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the right side.

Divide <math><mstyle displaystyle="true"><mo>-</mo><mn>1.80469265</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

The sine function is negative in the third and fourth quadrants. To find the second solution, subtract the solution from <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> , to find a reference angle. Next, add this reference angle to <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to find the solution in the third quadrant.

Simplify <math><mstyle displaystyle="true"><mn>2</mn><mrow><mo>(</mo><mn>3.14159265</mn><mo>)</mo></mrow><mo>+</mo><mn>0.30469265</mn><mo>+</mo><mn>3.14159265</mn></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>3.14159265</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>6.2831853</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>0.30469265</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>6.58787796</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>3.14159265</mn></mstyle></math> .

Move all terms not containing <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> to the right side of the equation.

Subtract <math><mstyle displaystyle="true"><mn>1.5</mn></mstyle></math> from both sides of the equation.

Subtract <math><mstyle displaystyle="true"><mn>1.5</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>9.72947061</mn></mstyle></math> .

Divide each term in <math><mstyle displaystyle="true"><mn>2</mn><mi>x</mi><mo>=</mo><mn>8.22947061</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> and simplify.

Divide each term in <math><mstyle displaystyle="true"><mn>2</mn><mi>x</mi><mo>=</mo><mn>8.22947061</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the right side.

Divide <math><mstyle displaystyle="true"><mn>8.22947061</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Add <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to <math><mstyle displaystyle="true"><mo>-</mo><mn>0.90234632</mn></mstyle></math> to find the positive angle.

Replace with decimal approximation.

Subtract <math><mstyle displaystyle="true"><mn>0.90234632</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>3.14159265</mn></mstyle></math> .

List the new angles.

The period of the <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>1.5</mn><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> radians in both directions.

Do you know how to Solve for x in Radians sin(2x+1.5)=-0.3? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | three hundred twelve million four hundred fifty-nine thousand four hundred seventeen |
---|

- 312459417 has 16 divisors, whose sum is
**740644608** - The reverse of 312459417 is
**714954213** - Previous prime number is
**3**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 36
- Digital Root 9

Name | one billion two hundred thirty-four million five hundred twenty thousand nine hundred fifty |
---|

- 1234520950 has 16 divisors, whose sum is
**2073996288** - The reverse of 1234520950 is
**0590254321** - Previous prime number is
**13**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 31
- Digital Root 4

Name | one billion four hundred sixty-two million seven hundred seventy-six thousand one hundred nine |
---|

- 1462776109 has 8 divisors, whose sum is
**1473976832** - The reverse of 1462776109 is
**9016772641** - Previous prime number is
**1093**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 43
- Digital Root 7