To find the <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mstyle></math> between the x-axis and the line between the points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> and <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>1</mn><mo>,</mo><msqrt><mn>2</mn></msqrt><mo>)</mo></mrow></mstyle></math> , draw the triangle between the three points <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> , and <math><mstyle displaystyle="true"><mrow><mo>(</mo><mn>1</mn><mo>,</mo><msqrt><mn>2</mn></msqrt><mo>)</mo></mrow></mstyle></math> .

Opposite : <math><mstyle displaystyle="true"><msqrt><mn>2</mn></msqrt></mstyle></math>

Adjacent : <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math>

One to any power is one.

Rewrite <math><mstyle displaystyle="true"><msup><mrow><msqrt><mn>2</mn></msqrt></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> as <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Use <math><mstyle displaystyle="true"><mroot><mrow><msup><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow><mrow><mi>n</mi></mrow></mroot><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mfrac><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></mstyle></math> to rewrite <math><mstyle displaystyle="true"><msqrt><mn>2</mn></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mstyle></math> .

Apply the power rule and multiply exponents, <math><mstyle displaystyle="true"><msup><mrow><mo>(</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi></mrow></msup><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mi>m</mi><mi>n</mi></mrow></msup></mstyle></math> .

Combine <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Evaluate the exponent.

Add <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><msqrt><mn>3</mn></msqrt></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Approximate the result.

Do you know how to Find the Secant Given the Point (1, square root of 2)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | six hundred twenty-five million two hundred thirty-six thousand seven hundred ninety-eight |
---|

- 625236798 has 16 divisors, whose sum is
**1280973456** - The reverse of 625236798 is
**897632526** - Previous prime number is
**41**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 48
- Digital Root 3

Name | one billion eight hundred thirty-three million two hundred sixty-nine thousand nine |
---|

- 1833269009 has 32 divisors, whose sum is
**2213785728** - The reverse of 1833269009 is
**9009623381** - Previous prime number is
**1061**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 41
- Digital Root 5

Name | one hundred eighty-one million seven hundred eighty-four thousand seven hundred forty-one |
---|

- 181784741 has 4 divisors, whose sum is
**181864800** - The reverse of 181784741 is
**147487181** - Previous prime number is
**2339**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 41
- Digital Root 5