Rewrite <math><mstyle displaystyle="true"><mo>-</mo><mn>330</mn><mi>°</mi></mstyle></math> as an angle where the values of the six trigonometric functions are known divided by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Apply the sine half-angle identity.

Change the <math><mstyle displaystyle="true"><mo>±</mo></mstyle></math> to <math><mstyle displaystyle="true"><mo>+</mo></mstyle></math> because sine is positive in the first quadrant.

Add full rotations of <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> ° until the angle is between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> ° and <math><mstyle displaystyle="true"><mn>360</mn></mstyle></math> °.

The exact value of <math><mstyle displaystyle="true"><mi>cos</mi><mrow><mo>(</mo><mn>60</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Write <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> as a fraction with a common denominator.

Combine the numerators over the common denominator.

Subtract <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Multiply the numerator by the reciprocal of the denominator.

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Multiply <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Rewrite <math><mstyle displaystyle="true"><msqrt><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac></msqrt></mstyle></math> as <math><mstyle displaystyle="true"><mfrac><mrow><msqrt><mn>1</mn></msqrt></mrow><mrow><msqrt><mn>4</mn></msqrt></mrow></mfrac></mstyle></math> .

Any root of <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the denominator.

Rewrite <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math> as <math><mstyle displaystyle="true"><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup></mstyle></math> .

Pull terms out from under the radical, assuming positive real numbers.

The result can be shown in multiple forms.

Exact Form:

Decimal Form:

Do you know how to Find the Reference Angle sin(-330 degrees )? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion six hundred fifty-nine million forty-one thousand two hundred ninety-two |
---|

- 1659041292 has 32 divisors, whose sum is
**4982572800** - The reverse of 1659041292 is
**2921409561** - Previous prime number is
**919**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 39
- Digital Root 3

Name | one billion six hundred sixty-eight million seventy-two thousand seven hundred twenty-six |
---|

- 1668072726 has 16 divisors, whose sum is
**2792375280** - The reverse of 1668072726 is
**6272708661** - Previous prime number is
**227**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 45
- Digital Root 9

Name | one billion five hundred fifty-four million eight hundred sixty-three thousand ninety-two |
---|

- 1554863092 has 8 divisors, whose sum is
**3498441966** - The reverse of 1554863092 is
**2903684551** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 43
- Digital Root 7