Subtract <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> from both sides of the equation.

Consider the form <math><mstyle displaystyle="true"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>b</mi><mi>x</mi><mo>+</mo><mi>c</mi></mstyle></math> . Find a pair of integers whose product is <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and whose sum is <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> . In this case, whose product is <math><mstyle displaystyle="true"><mo>-</mo><mn>2</mn></mstyle></math> and whose sum is <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Write the factored form using these integers.

If any individual factor on the left side of the equation is equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> , the entire expression will be equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Set <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mn>2</mn></mstyle></math> equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Solve <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mn>2</mn><mo>=</mo><mn>0</mn></mstyle></math> for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Add <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> to both sides of the equation.

Take the inverse secant of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the secant.

Simplify the right side.

The exact value of <math><mstyle displaystyle="true"><mi>arcsec</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

The secant function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> to find the solution in the fourth quadrant.

Simplify <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

To write <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> as a fraction with a common denominator, multiply by <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Combine fractions.

Combine <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>3</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> .

Combine the numerators over the common denominator.

Simplify the numerator.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>6</mn><mi>π</mi></mstyle></math> .

Find the period of <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> radians in both directions.

Set <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mstyle></math> equal to <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

Solve <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn><mo>=</mo><mn>0</mn></mstyle></math> for <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> from both sides of the equation.

Take the inverse secant of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>x</mi></mstyle></math> from inside the secant.

Simplify the right side.

The exact value of <math><mstyle displaystyle="true"><mi>arcsec</mi><mrow><mo>(</mo><mo>-</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

The secant function is negative in the second and third quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> to find the solution in the third quadrant.

Subtract <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> from <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Find the period of <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> radians in both directions.

The final solution is all the values that make <math><mstyle displaystyle="true"><mrow><mo>(</mo><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>-</mo><mn>2</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>sec</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> true.

Consolidate the answers.

Do you know how to Solve for x in Radians sec(x)^2-sec(x)=2? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion six hundred thirty-nine million six hundred forty-one thousand seventy-one |
---|

- 1639641071 has 8 divisors, whose sum is
**1663683840** - The reverse of 1639641071 is
**1701469361** - Previous prime number is
**137**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 38
- Digital Root 2

Name | one billion seven hundred fifty million five hundred thousand eight hundred ninety-seven |
---|

- 1750500897 has 32 divisors, whose sum is
**2505613824** - The reverse of 1750500897 is
**7980050571** - Previous prime number is
**821**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 42
- Digital Root 6

Name | one billion six hundred seventy-six million five hundred ninety-four thousand nine hundred one |
---|

- 1676594901 has 4 divisors, whose sum is
**2235459872** - The reverse of 1676594901 is
**1094956761** - Previous prime number is
**3**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 48
- Digital Root 3