Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>sin</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Find the amplitude <math><mstyle displaystyle="true"><mrow><mo>|</mo><mi>a</mi><mo>|</mo></mrow></mstyle></math> .

Amplitude: <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math>

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> in the formula for period.

Multiply the numerator by the reciprocal of the denominator.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Factor <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> .

Cancel the common factor.

Rewrite the expression.

Move <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> to the left of <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> .

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>9</mn></mrow></mfrac></mrow><mrow><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></mfrac></mstyle></math>

Multiply the numerator by the reciprocal of the denominator.

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>9</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Cancel the common factor of <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> .

Move the leading negative in <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>9</mn></mrow></mfrac></mstyle></math> into the numerator.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mi>π</mi></mrow><mrow><mn>9</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Factor <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> out of <math><mstyle displaystyle="true"><mn>9</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mi>π</mi></mrow><mrow><mn>3</mn><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Cancel the common factor.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mi>π</mi></mrow><mrow><menclose notation="updiagonalstrike"><mn>3</mn></menclose><mo>⋅</mo><mn>3</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><menclose notation="updiagonalstrike"><mn>3</mn></menclose></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Rewrite the expression.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⋅</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math>

Multiply <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mi>π</mi></mrow><mrow><mn>3</mn></mrow></mfrac></mstyle></math> and <math><mstyle displaystyle="true"><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mi>π</mi></mrow><mrow><mn>3</mn><mo>⋅</mo><mn>2</mn></mrow></mfrac></mstyle></math>

Simplify the expression.

Multiply <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>2</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mo>-</mo><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math>

Move the negative in front of the fraction.

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math>

List the properties of the trigonometric function.

Amplitude: <math><mstyle displaystyle="true"><mn>4</mn></mstyle></math>

Period: <math><mstyle displaystyle="true"><mn>3</mn><mi>π</mi></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mo>-</mo><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> (<math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mstyle></math> to the left)

Vertical Shift: None

Do you know how to Find Amplitude, Period, and Phase Shift y=4sin(2/3x+pi/9)? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | three hundred seventy-nine million five hundred fifty-one thousand three hundred eighty-eight |
---|

- 379551388 has 8 divisors, whose sum is
**853990632** - The reverse of 379551388 is
**883155973** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 49
- Digital Root 4

Name | eight hundred twenty-five million nine hundred seventy-eight thousand eight hundred ninety-one |
---|

- 825978891 has 16 divisors, whose sum is
**1123430400** - The reverse of 825978891 is
**198879528** - Previous prime number is
**79**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 57
- Digital Root 3

Name | two hundred seventy-four million eight hundred fifty-one thousand two hundred twenty-five |
---|

- 274851225 has 16 divisors, whose sum is
**290437952** - The reverse of 274851225 is
**522158472** - Previous prime number is
**297**

- Is Prime? no
- Number parity odd
- Number length 9
- Sum of Digits 36
- Digital Root 9