Subtract <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow></mstyle></math> from both sides of the equation.

Subtract <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow></mstyle></math> from <math><mstyle displaystyle="true"><mo>-</mo><mn>3</mn><mi>tan</mi><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> from both sides of the equation.

Subtract <math><mstyle displaystyle="true"><mn>3</mn></mstyle></math> from <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

Divide each term in <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn><mi>tan</mi><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow><mo>=</mo><mo>-</mo><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the right side.

Divide <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> by <math><mstyle displaystyle="true"><mo>-</mo><mn>4</mn></mstyle></math> .

Take the inverse tangent of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> from inside the tangent.

The exact value of <math><mstyle displaystyle="true"><mi>arctan</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>45</mn></mstyle></math> .

The tangent function is positive in the first and third quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> to find the solution in the fourth quadrant.

Add <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>45</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>180</mn></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>c</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> degrees in both directions.

Consolidate the answers.

Do you know how to Solve for c in Degrees -3tan(c)+3=tan(c)-1? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion six hundred seventy-six million nine hundred eighty-three thousand six hundred seventeen |
---|

- 1676983617 has 32 divisors, whose sum is
**3054509568** - The reverse of 1676983617 is
**7163896761** - Previous prime number is
**953**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 54
- Digital Root 9

Name | one hundred eleven million eight hundred sixty-eight thousand eight hundred six |
---|

- 111868806 has 16 divisors, whose sum is
**186135840** - The reverse of 111868806 is
**608868111** - Previous prime number is
**17**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 39
- Digital Root 3

Name | eight hundred nine million eight hundred twenty thousand four hundred twenty-four |
---|

- 809820424 has 128 divisors, whose sum is
**3203100288** - The reverse of 809820424 is
**424028908** - Previous prime number is
**67**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 37
- Digital Root 1