Subtract <math><mstyle displaystyle="true"><mn>5</mn><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mstyle></math> from both sides of the equation.

Subtract <math><mstyle displaystyle="true"><mn>5</mn><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mstyle></math> from <math><mstyle displaystyle="true"><mn>12</mn><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mstyle></math> .

Subtract <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> from both sides of the equation.

Subtract <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> from <math><mstyle displaystyle="true"><mn>5</mn></mstyle></math> .

Divide each term in <math><mstyle displaystyle="true"><mn>7</mn><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Simplify the left side.

Cancel the common factor of <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Cancel the common factor.

Divide <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Simplify the right side.

Divide <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>7</mn></mstyle></math> .

Take the inverse tangent of both sides of the equation to extract <math><mstyle displaystyle="true"><mi>B</mi></mstyle></math> from inside the tangent.

The exact value of <math><mstyle displaystyle="true"><mi>arctan</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mstyle></math> is <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The tangent function is positive in the first and third quadrants. To find the second solution, subtract the reference angle from <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> to find the solution in the fourth quadrant.

Add <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>180</mn></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of the <math><mstyle displaystyle="true"><mi>tan</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mstyle></math> function is <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> so values will repeat every <math><mstyle displaystyle="true"><mn>180</mn></mstyle></math> degrees in both directions.

Consolidate the answers.

Do you know how to Solve for B in Degrees 12tan(B)+5=5tan(B)+5? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | five hundred sixteen million one hundred ninety-two thousand three hundred fifty |
---|

- 516192350 has 16 divisors, whose sum is
**805803648** - The reverse of 516192350 is
**053291615** - Previous prime number is
**2137**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 32
- Digital Root 5

Name | one billion ninety million five hundred fifty-three thousand eight hundred six |
---|

- 1090553806 has 4 divisors, whose sum is
**1635830712** - The reverse of 1090553806 is
**6083550901** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 37
- Digital Root 1

Name | one billion seven hundred thirty-two million six hundred ninety-two thousand twenty-seven |
---|

- 1732692027 has 32 divisors, whose sum is
**2544182784** - The reverse of 1732692027 is
**7202962371** - Previous prime number is
**857**

- Is Prime? no
- Number parity odd
- Number length 10
- Sum of Digits 39
- Digital Root 3