Use the form <math><mstyle displaystyle="true"><mi>a</mi><mi>sin</mi><mrow><mo>(</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>c</mi><mo>)</mo></mrow><mo>+</mo><mi>d</mi></mstyle></math> to find the variables used to find the amplitude, period, phase shift, and vertical shift.

Find the amplitude <math><mstyle displaystyle="true"><mrow><mo>|</mo><mi>a</mi><mo>|</mo></mrow></mstyle></math> .

Amplitude: <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math>

Find the period of <math><mstyle displaystyle="true"><mi>sin</mi><mrow><mo>(</mo><mi>x</mi><mo>-</mo><mi>π</mi><mo>)</mo></mrow></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Find the period of <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math> .

The period of the function can be calculated using <math><mstyle displaystyle="true"><mfrac><mrow><mn>2</mn><mi>π</mi></mrow><mrow><mrow><mo>|</mo><mi>b</mi><mo>|</mo></mrow></mrow></mfrac></mstyle></math> .

Replace <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> with <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> in the formula for period.

The absolute value is the distance between a number and zero. The distance between <math><mstyle displaystyle="true"><mn>0</mn></mstyle></math> and <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> is <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Divide <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

The period of addition/subtraction of trig functions is the maximum of the individual periods.

The phase shift of the function can be calculated from <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>c</mi></mrow><mrow><mi>b</mi></mrow></mfrac></mstyle></math>

Replace the values of <math><mstyle displaystyle="true"><mi>c</mi></mstyle></math> and <math><mstyle displaystyle="true"><mi>b</mi></mstyle></math> in the equation for phase shift.

Phase Shift: <math><mstyle displaystyle="true"><mfrac><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mstyle></math>

Divide <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> by <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math> .

Phase Shift: <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math>

List the properties of the trigonometric function.

Amplitude: <math><mstyle displaystyle="true"><mn>1</mn></mstyle></math>

Period: <math><mstyle displaystyle="true"><mn>2</mn><mi>π</mi></mstyle></math>

Phase Shift: <math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> (<math><mstyle displaystyle="true"><mi>π</mi></mstyle></math> to the right)

Vertical Shift: <math><mstyle displaystyle="true"><mo>-</mo><mn>1</mn></mstyle></math>

Do you know how to Find Amplitude, Period, and Phase Shift y=sin(x-pi)-1? If not, you can write to our math experts in our application. The best solution for your task you can find above on this page.

Name | one billion seven hundred twenty-one million nine hundred forty-four thousand eight hundred thirty-four |
---|

- 1721944834 has 4 divisors, whose sum is
**2582917254** - The reverse of 1721944834 is
**4384491271** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 43
- Digital Root 7

Name | one billion eight hundred eight million four hundred sixty-three thousand five hundred fifty-six |
---|

- 1808463556 has 64 divisors, whose sum is
**4271097600** - The reverse of 1808463556 is
**6553648081** - Previous prime number is
**43**

- Is Prime? no
- Number parity even
- Number length 10
- Sum of Digits 46
- Digital Root 1

Name | five hundred twenty-nine million seven hundred twenty thousand six hundred six |
---|

- 529720606 has 4 divisors, whose sum is
**794580912** - The reverse of 529720606 is
**606027925** - Previous prime number is
**2**

- Is Prime? no
- Number parity even
- Number length 9
- Sum of Digits 37
- Digital Root 1